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Abstract Dimension reduction (DR) is important in the processing of data in domains
such as multimedia or bioinformatics because such data can be of very high dimension.
Dimension reduction in a supervised learning context is a well posed problem in that there
is a clear objective of discovering a reduced representation of the data where the classes are
well separated. By contrast DR in an unsupervised context is ill posed in that the overall
objective is less clear. Nevertheless successful unsupervised DR techniques such as principal
component analysis (PCA) exist—PCA has the pragmatic objective of transforming the data
into a reduced number of dimensions that still captures most of the variation in the data.
While one-class classification falls somewhere between the supervised and unsupervised
learning categories, supervised DR techniques appear not to be applicable at all for one-
class classification because of the absence of a second class label in the training data. In
this paper we evaluate the use of a number of up-to-date unsupervised DR techniques for
one-class classification and we show that techniques based on cluster coherence and locality
preservation are effective.

Keywords One class classification - Dimensionality reduction - Feature selection -
Feature transformation - Principal component analysis - Locality preservation -
Cluster coherence

1 Introduction

In recent years, the traditional distinction in machine learning between supervised and
unsupervised techniques has been blurred due to the emergence of real-world problems that sit
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somewhere between these two extremes. In supervised classification problems, discriminating
classifiers are trained using positive and negative examples. However, for a number of
practical problems, counter-examples are either rare, entirely unavailable or statistically
unrepresentative. Such problems include industrial process control, text classification and
analysis of chemical spectra.

One-class classifiers (OCCs) have emerged as a set of techniques for situations where
labelled data exists for only one of the classes in a classification problem. For instance, in
industrial inspection tasks, abundant data may only exist describing the process operating
correctly. It is difficult to gather training data describing the myriad of ways the system might
operate incorrectly. A related problem is where negative examples exist, but their distribution
cannot be characterised. For example, it is reasonable to provide characteristic examples of
family pictures but impossible to provide examples of pictures that are “typical” of non-
family pictures. One-class classifiers are emerging as a solution, which characterises the
target class, to distinguish it from all other classes.

In practice, one-class problems are typically of high dimension so DR is an important
pre-processing step. Indeed the evaluation presented by Manevitz and Yousef (2001) shows
that one-class Support Vector Machine (SVM) performance is quite sensitive to the number
of features used. This contrasts with two-class SVMs which are generally considered to be
robust to high data dimensionality. This provides additional justification for DR in OCC
construction. However, the absence of counter-examples means it is difficult to identify a
feature subset that encodes a discriminating description of the concept.

In this paper we review a range of unsupervised DR techniques and evaluate their per-
formance on a number of OCC problems. We find that DR based on locality preservation
and cluster coherence principles seem particularly promising for OCC. However locality
preservation is more likely to be effective when there are no irrelevant features in the full
feature set; i.e. locality in the original space must be meaningful. One remarkable finding
from the evaluation is the bad performance of PCA on many of the datasets. It appears that for
some domains PCA will be at least as effective for dimension reduction as the more complex
alternative techniques, but for others it will damage the performance. That there is “no silver
bullet” is not surprising as the requirements of dimension reduction for the different datasets
vary and the different biases of the different approaches are appropriate in some situations
but not others.

In the next section we provide an overview of OCC and describe the OCC techniques
included in the evaluation. In Sect.3 we describe the DR techniques considered in the
evaluation—the evaluation is presented in Sect.4. The paper concludes with a summary
and some proposals for further research.

2 One-class classifiers

Traditionally machine learning tasks are divided into supervised and unsupervised categories.
Roughly speaking, in unsupervised learning we are provided with a dataset (set of examples
describing a real world concept) and the objective is to uncover some structure in the data. In
supervised learning we are provided with a dataset where the information to be modeled is
explicitly stated in the form of a label (a “class” label in the case of so called “classification
problems”) and the task is to predict the label for new (as yet unseen) examples.

One-class classification, also referred to as novelty or outlier detection, is sometimes
thought of as a weaker form of unsupervised learning. The task is still to classify, but the
only information we are given about the training examples is that they belong to the same
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class, typically called the “positive” or “target” class. The task here is to accept or reject unseen
examples depending on their similarity to the known positive examples. OCC approaches
consequently can operate with very few, or no, negative training examples. In other words,
one-class learning handles the “no-counter-example” and “imbalanced-data” problems by
considering only positive examples. When unlabeled examples and/or a number of negative
examples are available for training, several OCC techniques can also use them to fine-tune
their performance.

Despite the lack of formal foundations for the one-class problem (Yaniv and Nisenson
2006), there is a doubtless increasing interest in both the methods and techniques available and
their practical applicability. Several recent surveys (Tax 2001; Marsland 2003; Markou and
Singh 2003a,b; Hodge and Austin 2004; Juszczak 2006) cover to a greater or lesser extent the
various alternatives. In the current study we have chosen four different OCCs: support vector
data description (SVDD), a k-nearest neighbours approach, a k-means clustering approach
and a Gaussian model. All of these are available in the Data Description toolbox (Tax 2007),
an open source Matlab library of one-class classification tools.

Support vector data description (Tax 2001; Tax and Duin 2004): The SVDD learns the
hypersphere, defined by a center a and a radius R, that encloses (almost) all the training set
while covering as little volume as possible. It employs the kernel trick (Scholkopf and Smola
2001, p. 34) for learning more flexible boundaries, and the solution is found by solving a
convex quadratic optimization problem analogous to the one found in SVMs.

Clustering (k-means): Another approach to one-class classification is that of learning
clusters, modeling the target class as a reduced set of cluster prototypes or centers onto
which new examples are projected. Examples of clustering methods that can be used are the
self organizing map, learning vector quantization or k-means (the one we choose here, Tax
2001; Juszczak 2006). When a new example is to be classified, its distance to the nearest
prototype is used to score the extent to which it is an outlier.

Lazy learning (k-nearest-neighbours): The nearest neighbour approach can be used for
constructing one-class classifiers. The training data is stored and an outlierness criterion is
calculated for new examples based on their nearest neighbours, i.e. their position relative
to the seen examples. Several criteria have been proposed to measure the outlierness of an
example (Harmeling etal. 2006; Rieck and Laskov 2007). Here we use y (Harmeling etal.
2006) which is the average of the distances to the k nearest neighbours.

Parametric density estimation (Gaussian model) (Tax 2001; Juszczak 2006): The Gaussian
model is a simple parametric one-class classifier which models the training data under the
assumption that it comes from a unimodal multivariate normal distribution. These assumptions
fit a lot of natural processes, but when they are violated this model introduces a large bias.
The mean and the covariance matrix are estimated using a maximum likelihood approach.
To avoid possible numerical stability problems associated with the computation of the
determinant of the covariance matrix, more frequent in the high dimensional spaces we
work in, no normalization factor is calculated and just a plain Mahalanobis distance is used
as the resemblance criterion.

We selected these OCC strategies and not others because of their conceptual simplicity and
their well established properties. One characteristic that all the classifiers under consideration
share is some notion of locality and compactness. Locality is a relative concept that can be
defined in several ways, for example by only taking into account the interactions with a fixed
number of neighbours (nearest neighbours in k-NN and the nearest prototype in k-means) or
those in a small region of the input space (Gaussian kernels with a small width). Generally
speaking we talk of local models, models that cover just a small volume centered at concrete
points and dismissing any further considerations, as opposed to global ones, those that span
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the whole space. As we will note in the next section, this notions of locality are seriously
influenced by high dimensions.

3 Dimension reduction techniques

Learning gets harder very quickly as the dimensionality increases, not only because of the
possible presence of noise and redundancy in the data but for other reasons as well. In high
dimensional spaces the Gaussian kernel suffers from several theoretical problems (Frangois
etal. 2005; Verleysen and Francois 2005). The empty space phenomenon tell us that to
cover the whole space we need a number of samples that grows exponentially with the
dimensionality (fortunately, in practice, we won’t need to cover the whole space). The curse
of dimensionality implies that in order to learn successfully, we would need a number of
training examples that also grows exponentially with the dimensionality. The “concentration
of measure” phenomenon seems to render distance measures not relevant to whatever concept
is to be learnt as the dimension of the data increases (Ledoux 2001). So, for theoretical and
practical reasons, it is necessary to study methods for combating high dimensionally in the
one-class setting.

Research on dimension reduction has itself two dimensions. The first design decision is
whether to select a subset of the existing features or to transform to a new reduced set of
features. The other dimension in which DR strategies differ is the question of whether the
learning process is supervised or unsupervised (see Fig. 1). For OCC problems both feature
selection and feature transformation strategies are relevant. However, given that labelled data
is only available for one class, it seems that supervised DR techniques cannot be directly
applied to OCC problems.

In supervised learning the objective of DR is to optimize the performance of the final
system, that is, minimize the classification error. However, in one-class classification perfor-
mance estimation is difficult because the absence of counterexamples makes the estimation
of the false positive rate hard and assumption-based. This makes it difficult also to tune the
bias of the classifier and the best strategy to address this problem depends on the specifics of
the data available.

Separability-based
(supervised)
feature selection
N —n o
e e x x
2 x x 2 X X %
5] X X x ] X
5} E x X XX 5} X X X X
w X w
3 o OO [P Oo © ° Variance-based
o (unsupervised)
l feature selection
Feature 1 Feature 1
X Class A« Class A (projected) X Class A (Target)

o Class B o Class B (projected)

Fig. 1 The graph on the left shows the strength of supervised feature selection arising from the potential
to discover features that separate classes. By contrast feature selection based on variance may render data
less separable. Then in the one-class scenario on the right, no direct separability information is present in the
training data

@ Springer



An evaluation of dimension reduction techniques 277

A sensible approach is to try to synchronize the assumptions of both DR and classification.
In our evaluation we consider four DR techniques. The first two are the classical principal
component analysis (PCA) and the Q-« algorithm presented by Wolf and Shashua (2005).
The final two, locality preserving projections (LPP) and Laplacian score (LS) are explicitly
based on the principle of locality preservation and these are described in Sect. 3.1. We believe
that locality preservation is of particular relevance to DR in the OCC domain because, usually,
one class classifiers rely on local neighbourhood relationships (see Sect.2). The first three
techniques are in the family of spectral methods, where the low dimensional representations
are derived from the eigenvectors (spectra) of specially constructed matrices (Saul etal. 2006,
p. 294), while LS is closely related to LPP.

Principal component analysis (PCA): PCA (Jolliffe 2002) is the most commonly used
technique for unsupervised dimensionality reduction. It aims at finding the linear projections
that best capture the variability of the data. In this study we use the common approach of
keeping those directions that explains most of the variance. In Tax and Muller (2003) and
in Sect. 4 it is shown that retaining these high variance dimensions is not always optimal for
one-class classification, so a minor components analysis (use the smallest variance directions)
can be better under some circumstances.

The Q-a algorithm: A well motivated criterion of cluster quality is cluster coherence, in
graph theoretic terms this is expressed by the notion of objects within clusters being well
connected and individual clusters being weakly linked. The whole area of spectral clustering
captures these ideas in a well founded family of clustering algorithms based on the task of
minimising the graph-cut between clusters (Ng etal. 2001).

The principles of spectral clustering have been extended by Wolf and Shashua (2005)
to produce the Q- algorithm that simultaneously performs feature subset selection and
discovers a good partition of the data. As with spectral clustering, the fundamental data
structure is the affinity matrix A where each entry A;; captures the similarity (typically as a
dot-product) between data points i and j. In order to facilitate feature selection the affinity
matrix for Q-« is expressed as A, = ip:1 oz,-m,-m;r where my; is the ith feature vector in
the data matrix that has been normalised to be centered on 0 and be of unit Ly norm (this is
the set of values in the data set for feature 7). m; miT is the outer-product of m; with itself. o
is the weight vector for the p features—ultimately the objective is for some of these weight
terms to be set to 0.

In spectral clustering Q is an n x k matrix composed of the k eigenvectors of A correspon-
ding to the largest k eigenvalues (A;). Wolf and Shashua show that the relevance of a feature
subset as defined by the weight vector & can be quantified by:

k
Rel(a) = trace(Q"AJA,Q) = D 1;
i=1

They show that feature selection and clustering can be performed as a single process by
optimising:

rr(lzax trace(QTAIAa Q)
o

subject to oTo =1and QTQ =L

Wolf and Shashua show that this optimization problem can be approached by solving
two inter-linked eigenvalue problems that produce solutions for o and Q. They demonstrate
that a process of iteratively solving for « then fixing o and solving for Q will converge to a
local maximum of the energy function (induced cluster coherence). They also show that the
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process has the convenient property that the «; weights are biased to be positive and sparse,
i.e. many of them will be zero.

So the Q-« algorithm performs feature selection in the spirit of spectral clustering, i.e. it
discovers a feature subset that will support a partitioning of the data where clusters are well
separated according to a graph-cut criterion.

3.1 Locality preservation

Locality preservation in dimensionality reduction techniques refers to the aim of keeping
neighbourhood properties only, e.g. objects that are close in the input space should also be
close in the reduced space. Several linear and nonlinear techniques exploiting this criterion
have recently been proposed (Saul etal. 2006). For the OCC problem it is rational to think
that a locality preserving dimension reduction technique would be more practical in some
cases than a global based one. Locality and density are frequently used in the OCC literature
and both are present in the locality preservation bias.

Locality preserving projections (LPP): The idea behind LPP is that of finding subspaces
which preserve the local structure in the data (He and Niyogi 2003; He 2005). Given a matrix
A (symmetric, positive, invertible and usually sparse) which captures information about the
relationships between the data points, for example the similarity in a neighbourhood, LPP
finds the optimal linear embedding that respects the structure present in that matrix. LPP
preserves cluster structures when clustering is based on locality, such as in the k-means
algorithm, which is an attractive quality when used together with cluster analysis based
OCCs. The details of LPP are described in Algorithm 1.

Algorithm 1: LPP computation (He and Niyogi 2003)

Construct the adjacency graph: let S be the training set and G denote a graph with |S| nodes. We put
an edge between nodes i and j if x; and x ; are “close”. There are two variations:

— ¢&-neighbourhoods (parameter ¢ € R). Nodes i and j are connected if |lx; — x; ||2 <e
where the norm is the usual Euclidean norm in IR9X .

— k nearest neighbours (parameter k € IN). Nodes i and j are connected if i is
among the k-nearest neighbours of j or vice-versa.

Choose the weights for the graph edges: Here, as well, we have two variations for weighting the
edges. A is a sparse symmetric | S| x | S| matrix with A;; having the weights of the edge joining
vertices i and j, and O if there is no such edge.

Il =112
— Heat kernel (parameter # € R). When nodes i and j are connected put A;; = e~ 7
— Simple minded (no parameter). When nodes i and j are connected, put A;; = 1.

Eigenmaps: Compute the eigenvectors and eigenvalues for the generalized eigenvector problem:
SLSTa = »SDSTa (D)

where D is a diagonal matrix whose entries are column sums of A, D;; = > j Aji.L=D—Aisthe
Laplacian matrix.

The embedding is defined by the bottom eigenvectors in the solution of Eq. 1. The construc-
tion of the weighted graph in the first and second steps of Algorithm I can be accomplished
using a variety of criteria. This aspect is quite useful as it provides a mechanism to bring
external information to bear on the problem.
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Laplacian score for feature selection (LS): The same criterion of locality preservation
found in LPP can be applied in the feature selection context, where the merit of each feature
is measured according to its locality preservation power (He etal. 2005).

As with Q-«, there is no explicit enumeration of the feature subsets. Rather a nearest
neighbour based graph is constructed from the training set and analysed to rank each feature
individually, without taking into account further interactions between them. The first two
steps of the algorithm are identical to those of LPP (Algorithm 1). For ranking each feature,
its Laplacian score is computed. For the i-th feature we define:

m/D1

byt l

- 1™p1

m; = mj

where 1 =[1,..., 1]

The Laplacian score (LS;) for the i-th feature is:
] Lin,
LS, = ~f|.7~ ()

m; Dm;

In Eq.2 the numerator measures to which extent the ith feature preserves the structure
present in the graph—with smaller values corresponding to better features. The denominator
measures the variance of the feature. For a feature to be selected it must have low LS, which
implies high variance (more representative power) and locality, as defined by the graph,
preservation properties.

4 Evaluation

In order to evaluate the performance of the different DR/OCC pairs we used the labeled
datasets summarized in Table 1. They are high dimensional, low sample size datasets that
come from different domains: biomedical (Bronchiolitis, Arrhythmia, TIS-5% and Leuke-
mia), chemical spectral analysis (85Drugs), fault detection (DelftPump5x3Noisy), text clas-
sification (fbis, tr12, oh5 and re0), image classification (indoor-outdoor-flowers-leaves), digit
recognition (mfeat-pixel) and mine detection (sonar). We preprocessed them with normali-
sation and, when applicable, missing value substitution. We also subsampled the TIS dataset
so that the experiments could be run in reasonable time.

4.1 Baseline evaluation

In addition to the techniques described in Sect. 3 and the scenario of no feature selection, we
add two dimension reduction methods for the purpose of comparison. We evaluate a random
feature selection method to provide a baseline—the algorithms under consideration are not
effective if they cannot improve on this. We also consider a ranking of the features using
information gain over the original labeled datasets (this is “‘cheating”). In the same way that
no dimension reduction and random feature selection provide a floor for the evaluation, this
cheating feature selection provides a ceiling for expected performance.

It is interesting to note that these ceiling and floor proposals are breached in some circum-
stances (see Tables 2 and 3). Thinking that information gain will provide an optimal solution
for all problems is naive. Get a more accurate ceiling is a supervised dimensionality reduction
problem that goes beyond the aims of this paper. Analogously, the random approach could
do as well as, or better, than more principled approaches; but that case is improbable so high
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Table 1 Summary of the datasets used in the evaluation

Dataset n d Target Class (n#) Source

Bronchiolitis 118 22 1-Day (37) Doyle etal. (2006) #
Arrhythmia 452 279 Normal (245) Asuncion and Newman (2007)b
TIS-5% 668 927 TIS (178) Liu and Wong (2003)¢
Leukemia 72 7,129 ALL (47) Golub etal. (1999)d

85Drugs 85 510 Cocaine (49) Ryder (2002)
DelftPump5x3Noisy 899 64 Normal (216) Ypma (2001)°

fbis 2,463 2,000 100 (92) Han and Karypis (2000

oh5 918 3,012 Anticoag (74) Han and Karypis (2()00)f

re0 1,504 2,886 bop (92) Han and Karypis (2000)f

tr12 313 5,804 100 (93) Han and Karypis (2000

iofl 240 285 Ind (59), Lea (60) -2

mfeat-pixel 2,000 240 7 (200), 8 (200) Asuncion and Newman (2007)b
sonar 208 60 Mines (111) Asuncion and Newman (2007)b

3 http://mlg.ucd.ie/datasets

b http://archive.ics.uci.edu/beta/

€ http://research.i2r.a-star.edu.sg/rp/SequenceData/TIS .html

d http://www.upo.es/eps/bigs/datasets.html

€ http://www-ict.ewi.tudelft.nl/%7Edavidt/occ/547/oc_547 .html

£ http://prdownloads.sourceforge.net/weka/ 19MclassTextWc.zip?download

chances are that it will perform bad. Averaging over several runs would account for those
improbable cases, but we are not really interested on how random feature selection performs
at this stage. Keeping to just one the number of random feature selection runs retains the
“real flavor” of randomness.

4.2 Parameter selection

One difficulty in assessing the performance of the combination of OCC and DR techniques
is the model selection (parameter tuning) required for the different techniques. We followed
a simple approach of fixing the values of the parameters to reasonable values; for instance,
k = 61s set as the number of clusters for k-means and neighbours for k-NN. With SVDD we
use a Gaussian kernel and the rest of the parameters are left to the dd_tools default values.
The classification threshold is set in the training process so that 90% of training examples
are accepted (i.e. we consider that 10% of the training examples are negatives).

For the parameters of the dimension reduction techniques, when applicable, we follow the
principle of selecting those used in the counterpart classifiers. For example, the same value of k
in the k-nearest neighbour is used when constructing the adjacency graph for LPP and LS, and
the value of & in the k-means algorithm is set to the target number of clusters for Q-«. In both
LPP and LS the “simple minded” weighting approach is followed. No further model selection
is done and we also fix the rest of the parameters to a priori selected default values. The choice
of target dimensionality is also an important issue. In this case we just explored all possibi-
lities, from dimensionality 1 to 60, and higher dimensionalities at regular intervals up to the
original dimensionality or to the maximum defined by the feature transformation embedding.

Selecting generic parameter settings is useful to the purpose of evaluation, but ignores
that there may be dependencies between the DR techniques and the OCC methods. The same
parameters cannot be optimal in all the diverse problems we use as test bed. Unfortunately
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Table 2 The results on text classification (a—d), image classification (e—f) and digit recognition (g—h)
datasets

No DR 1G Random Q- LS LPP PCA
(a) fbis, 100
Gauss 50.0(2000)  76.7(19) 61.3(50)* 53.8(2) 57.3(26) 51.3(8) 50.6(6)
k-Means ~ 55.8(2000)  74.1(14) 56.9(1400) 54.9(1800) 56.2(1800)  51.3(8) 51.6(6)
k-NN 54.2(2000)  73.6(14) 56.0(400) 54.0(2) 56.2(6) 51.6(8) 52.1(3)
SVDD 58.5(2000) 73.4(14) 57.4(1800)  58.3(9) 57.9(1800)  50.0(26) 49.7(2)

(b) oh5, Anticoagulants
Gauss 50.03012)  85.3(24) 59.0(45) 50.7(903) 50.0(2409)  50.0(9) 50.0(25)
k-Means  50.1(3012)  81.2(31) 56.3(19) 53.7(2409)  49.4(1204)  50.0(9) 51.0(1)
k-NN 48.1(3012)  78.6(18) 55.2(15) 56.3(602) 49.6(1506)  50.0(9) 50.0(25)
SVDD 52.9(3012)  89.0(33) 55.0(13) 63.0(3)* 51.0(2710)  50.0(9) 50.0(25)
(c) re0, bop
Gauss 50.0(2886)  72.1(11) 60.9(38) 52.8(57) 51.5(60) 45.9(1) 50.0(24)
k-Means  52.3(2886) 64.7(11) 57.3(35) 53.6(2308)  52.0(2020) 47.5(18)  54.7(1)
k-NN 50.2(2886)  56.6(5) 55.9(31) 52.1(2308)  50.8(1443) 48.8(19) 50.8(1)
SVDD 56.2(2886)  80.4(32) 59.1(865) 75.1(7)* 54.7(2597) 47.4(16) 52.7(2)
(d) tr12, 100
Gauss 50.0(5804)  79.2(38) 55.6(57) 52.6(10) 52.7(580) 50.2(8) 48.0(3)

k-Means ~ 48.2(5804)  71.4(6) 52.9(44) 51.3(3) 51.8(26) 56.4(1)*  49.2(9)
k-NN 48.8(5804)  68.6(7) 51.1(47) 51.5(5) 51.3(21) 50.5(5) 48.2(3)
SVDD 51.6(5804) 86.1(1) 52.4(5223) 49.74) 51.9(34) 50.5(5) 48.5(9)

(e) iofl, Indoor
Gauss 50.0(285) 78.3(114)  78.0(29) 76.1(21) 86.3(39)* 76.3(19)  78.3(39)
k-Means  73.5(285) 78.3(228)  75.0(57) 76.2(199) 74.3(228) 76.3(22)  76.7(42)
k-NN 69.5(285) 68.9(256)  69.8(171) 70.3(199) 69.2(256) 74.1(22) 68.2(51)
SVDD 71.9(285) 89.6(199)  69.7(60) 70.2(256) 70.8(256) 72.013)  70.6(29)
(f) iofl, Leaves
Gauss 50.0(285) 70.0(1) 71.1(12) 71.1(55) 73.1(51) 70.8(9) 70.3(18)
k-Means  69.7(285) 73.9(171)  72.5(85) 69.4(256) 71.9(256) 70.8(16)  65.8(51)
k-NN 70.3(285) 72.5(228) 72.5(57) 70.3(256) 68.9(256) 71.1(13)  65.3(52)
SVDD 69.2(285) 71.9(142)  71.1(85) 69.2(256) 68.1(256) 74.2(8)*  65.3(53)
(g) mfeat-pixel, 7
Gauss 50.5(240) 89.6(38) 91.4(16) 91.6(15) 85.7(21) 80.0(5) 97.6(37)
k-Means  93.0(240) 93.9(120)  94.1(40) 94.2(216) 93.8(192) 79.3(2) 96.5(60)
k-NN 95.3(240) 95.0(192) 95.1(72) 95.5(168) 95.3(192) 62.4(2) 97.8(72)*
SVDD 50.0(240) 87.6(19) 90.0(11) 91.5(22) 82.2(12) 75.3(5) 85.1(2)
(h) mfeat-pixel, 8
Gauss 50.0(240) 78.5(39) 85.0(31) 84.4(31) 79.0(21) 77.4(9) 94.0(57)*
k-Means  88.9(240) 90.0(192)  91.2(168) 91.8(216) 91.1(168) 71.0(11)  91.9(120)
k-NN 92.6(240) 92.3(216)  93.0(96) 93.2(192) 93.1(168) 53.3(5) 93.3(144)
SVDD 50.0(240) 82.1(9) 74.3(6) 81.1(13) 75.0(12) 74.6(11)  61.1(2)

For each OCC/DR pair we report the balanced accuracy rate for the winning dimensionality (in brackets). The
results for the supervised dimension reduction based on information gain (IG) are shown in italics, as this is
cheating. The winning unsupervised dimension reduction techniques for each classifier are shown in boldface.
The overall winner, resolving ties by giving the victory to the lowest dimensionality, is highlighted with an
asterisk®*. It is clear that dimension reduction is effective in most cases, even if done at random

there is no clear criterion (loss function) on which to base the model selection. There exist
techniques to optimize the parameters of one class classifiers [e.g. simplicity-versus-
consistency (Tax and Muller 2004), minimum-volume (Tax 2001; Juszczak 2007)]. Moreover
sometimes the model selection can come without a considerable extra effort (e.g. optimizing
k for k-NN using leave-one-out density estimation or selecting the target dimensionality by
using some form of the spectral gap). However, optimizing the parameters for both steps
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Table 3 The results on biomedical (a—d) and other datasets (e—g)

No DR 1G Random Q-« LS LPP PCA

(a) Bronchiolitis, 1-Day
Gauss 63.7(22) 72.1(13) 67.7(13) 72.6(7) 72.6(16) 73.909) 73.4(17)
k-Means  67.6(22) 72.5(18) 68.7(17) 74.0(16) 75.5(9)* 66.8(11)  71.9(19)
k-NN 65.6(22) 70.0(16) 65.6(22) 65.7(21) 69.0(11) 68.6(11)  65.1(20)
SVDD 65.5(22) 71.6(1) 68.4(16) 67.0(16) 67.6(20) 60.3(10)  67.2(16)
(b) Arrhythmia, normal
Gauss 55.0(279) 77.6(57) 69.4(111)  70.0(83) 68.9(83) 62.6(2) 70.5(111)
k-Means  67.8(279) 76.3(34) 69.1(33) 71.0(167)*  69.9(139)  58.1(2) 68.4(167)
k-NN 67.2(279) 76.9(35) 67.3(167)  68.3(167) 69.3(111)  58.7(1) 66.1(195)
SVDD 66.1(279) 75.2(31) 67.1(139)  70.5(111) 68.1(167)  61.3(3) 68.0(167)
(¢) TIS-5%, TIS
Gauss 53.9(927) 82.7(3) 53.9(834)  64.0(20) 53.9(556)  50.0(4) 50.0(2)
k-Means  44.7(927) 76.7(3) 49.8(1) 50.2(24) 50.7(10) 52.5(1) 52.6(1)
k-NN 45.5(927) 80.9(5) 49.7(1) 52.1(4) 51.7(10) 50.6(2) 51.1(1)
SVDD 39.9(927) 82.5(2) 49.6(1) 76.0(1)* 60.8(1) 50.1(3) 50.7(2)
(d) Leukemia, ALL
Gauss 50.0(7129)  93.6(4) 66.7(16) 66.0(37) 66.0(10) 50.009) 52.9(1)
k-Means  63.2(7129)  91.6(1) 68.4(45) 63.2(2851)  71.221)*  59.1(4) 50.909)
k-NN 50.7(7129)  95.7(7) 54.7(24) 53.6(2) 62.7(19) 50.0(14)  50.0(25)
SVDD 50.0(7129)  93.7(17) 68.1(712)  70.5(712) 61.9(6) 57.5(3) 66.3(6)
(e) 85Drugs, Cocaine
Gauss 83.3(510) 83.6(357)  83.6(255)  81.9(459) 81.9(459) 87.33)* 81.1(37)
k-Means  80.0(510) 81.7(357)  79.3(357)  82.8(255) 81.7(255) 80.9(17)  81.1(19)
k-NN 69.5(510) 76.5(35) 69.5(59) 66.8(459) 68.1(58) 79.5(14)  68.1(6)
SVDD 63.3(510) 65.0(50) 67.0(25) 65.4(1) 65.0(7) 82.6(4) 64.3(42)
(f) DelftPump5x3Noisy, Normal
Gauss 65.1(64) 74.2(32) 65.0(60) 64.4(60) 79.6(25) 67.2(50)  55.1(60)
k-Means  53.5(64) 64.9(4) 55.4(49) 55.5(23) 59.0(17) 63.8(48) 51.8(2)
k-NN 54.5(64) 70.2(8) 55.3(39) 57.9(25) 81.8(16)*  67.3(14) 57.3(5)
SVDD 52.8(64) 57.6(9) 54.3(31) 56.4(45) 55.2(18) 64.2(45)  50.5(59)
(g) Sonar, Mines
Gauss 62.4(60) 65.7(39) 66.8(43) 69.0(21) 70.6(37)*  64.024)  65.4(48)
k-Means  56.0(60) 63.0(31) 59.9(40) 67.0(23) 65.7(41) 66.0(33)  60.3(51)
k-NN 52.8(60) 54.7(30) 56.1(37) 61.5(19) 65.5(31) 66.1(9) 57.7(5)
SVDD 60.3(60) 68.9(17) 61.1(28) 62.2(46) 62.1(50) 64.1(32) 59.4(59)

For each OCC/DR pair we report the balanced accuracy rate for the winning dimensionality (in brackets). The
results for the supervised dimension reduction based on information gain (IG) are shown in italics, as this is
cheating. The winning unsupervised dimension reduction techniques for each classifier are shown in boldface.
The overall winner, resolving ties by giving the victory to the lowest dimensionality, is highlighted with an
asterisk®*. We appreciate that locality preservation and cluster coherence can be very effective

would add too many dimensions to our already high-dimensional research problem. Since
we are not looking for the best result, but just trying to gain insight into the interactions
of the DR/OCC processes, we try to be fair by applying the same fixed conditions in all
cases.

4.3 Results

The results are shown in Tables2 and 3. The class distributions in most of the problems
are unbalanced, so we use the balanced accuracy rate (BAR), estimated by stratified 10-
fold cross validation, to measure the performance. The BAR is defined as the average of
the true positive rate (sensitivity) and true negative rate (specificity). The figures shown
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are those obtained by the winning target dimensionality in each case (in parenthesis); this
selection aposteriori of the optimum target dimensionality could not be done in a realistic
one-class problem, but here it allows us to assess the optimal performance that would be
expected.

Obviously the distribution of datasets conditions the shape of the overall results. In just a
few of them feature transformation is more suitable than feature selection. Usually feature
selection is better for datasets containing informative features while it fails in datasets with
highly correlated features (like mfeat), where on the contrary PCA excels. Moreover, we
report results on four datasets that belong to the same type of problem: text classification
using bag of words to represent the documents; we also used the same dataset changing the
target class (mfeat-pixel and iofl). We try in this way to gain insight on the consistency of the
good or bad behaviour of DR techniques over the same kind of problems and how important
is the “distribution” of the classes we are modelling.

The excellent average performance of the supervised technique (IG) demonstrates that
when fed with proper, discriminative, representations, one-class techniques work well. This
can be appreciated, for example, in the case of the text classification problems. These also
show the intricacies of dimensionality reduction; random feature selection is a good contender
there and the structure found by the rest of the techniques is of little use. However the
combination of Q-« and SVDD, a recurrent pair on high scores, provide reasonably good
results on oh5 and, specially, re0; we will come back to this result later.

In the feature selection arena Q-« is very promising. In problems where feature selection
is known to be essential, such as TIS (Liu and Wong 2003), it gives high scores to features
proven relevant in the supervised classification setting, which also yields to improvements in
the one-class case. Also the combined locality preservation and variance accentuation bias
renders LS a very competitive contender; actually it is the technique that gets the overall
victory more times (5) over a diverse range of datasets (iofl-Indoor, Bronchiolitis, Leukemia,
DelftPump and sonar).

Usually mixing SVDD with LS and PCA is suboptimal. As we will see in Sect.4.4,
spreading the data is not a good idea when seeking for minimum volume, because in this
way we force SVDD to create loose boundaries. This contrasts with what happens with Q-o;
when modeling the class clusters correctly the selected features induce a small number of
compact clusters that SVDD can describe more easily. See Tables?2 (b, c, g, h) and 3 (b, c, d).

In the case of several datasets like Arrhythmia or Leukemia, the locality preserving prin-
ciple of LPP is not competitive with the rest of the unsupervised criteria. This is due to both
numerical issues caused by the low sample size and to the presence of a lot of irrelevant
features in the full feature set, which renders locality in that space inappropriate. However, in
the case of the 85Drugs and the DelftPump datasets locality preservation is the clear winning
bias. Data coming from spectra or multiple sensors usually have high redundancy and low
irrelevancy (Verleysen and Frangois 2005), which is exploited by the LPP and LS criteria to
provide highly informative low dimensional representations.

In Table4 we show a summary of the relative performance of the DR techniques across
the different classifiers. In Appendix A further information can be found. In considering
this summary it must be remembered that we are measuring across an arbitrary selection
of domains and datasets; for example, the number of text datasets included has a strong
influence on these results, favoring the random feature selection. Even if usually we will be
only interested on the best performance for each problem, these figures do provide insight on
which criteria work well together as well as on the consistency of the improvements achieved.
For example, Q- is the best match for k-means and with LS it is also a good partner of k-NN.
This is not surprising since all those techniques pursue similar goals.
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Table 4 Pairwise rankings for

. . . - Dominance Win Loss
the dimensionality reduction
tec}.miques on a per classifier (a) Gauss
ba51s_(a—d) and across all the G 45 67 20
classifiers (¢) Random 28 57 29
LS 20 52 32
Q-o 14 51 37
PCA —16 35 51
LPP -27 29 56
No DR —64 10 74
(b) k-Means
1G 63 76 13
Q-« 19 54 35
LS 7 48 41
Random 4 47 43
PCA -8 41 49
LPP -30 30 60
No DR —55 17 72
(c) k-NN
1G 45 67 22
Q-« 21 55 34
LS 20 54 34
Random 3 45 42
LPP —16 36 52
PCA -33 27 60
No DR —40 23 63
(d) SVDD
IG 75 82 7
Q-« 27 58 31
Random 4 47 43
LS -3 43 46
LPP —13 38 51
No DR —41 24 65
PCA —49 20 69
(e) Total
. 1G 228 292 64
For eact.l dataset and c.lassn'ier, Q-« 81 218 137
each pair of DR techplques are LS 44 197 153
compa.red and the win/tie/loss Random 39 196 157
result is r_ecprded. On average LPP _36 133 219
synchronising th; goals of thf: PCA 106 123 229
DR and the classifier results in No DR 200 74 274

more consistent improvements

We want to highlight that the winning classifier of the review is the Gaussian. It gets the
best overall performance in several of the datasets and ranks high in most of them. This could
be due to the key advantage that it does not require model selection, an issue that is important
for the rest of the classifiers. However, it is also the case that simplicity and natural models
work very well when a correct representation for the inputs is used (Holte 1993).

In Fig.2 we show the evolution of the sensitivity/specificity tradeoff for the Gaussian
classifier across four datasets. The same tradeoff is shown in Fig. 3, this time fixing the data-
set (DelftPump5x3Noisy) and varying the classifiers. Sensitivity and specificity are closely
related to the dimensionality of the input space and it is clear that the selection of the optimal
number of dimensions is critical. How to do it in practice, when we won’t have an objec-
tive loss function to drive the selection, is a challenging problem. Practical approaches that
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Fig. 2 Evolution of the sensitivity (left) versus specificity (right) tradeoff for the Gaussian model across four
datasets: TIS-5%, leukemia, 85Drugs, DelftPump5x3Noisy. Increasing target dimensionality up to 60. The
general rule is that the higher the dimensionality, the better the specificity and the worse the sensitivity

estimates this as a by-product of the dimensionality reduction technique appear to us as the

most sensible ones.

Empirically it usually holds that the more the dimensionality is reduced, the better the
sensitivity and the worse the specificity. When the dimensionality is high the descriptions
are inaccurate and so the classifiers become accept-all or, more often, reject-all machines.
Although usually the best tradeoff point would be the desired, this effect can be used for cost
sensitive applications which seek better performance on one of the sides of the error, whether

sensitivity or specificity.
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Fig. 3 Evolution of the sensitivity (left) versus specificity (right) tradeoff in the DelftPump5x3Noisy dataset
for the different classifiers: Gauss, k-means, k-NN and SVDD. Increasing the target dimensionality from 1 up
to 60

4.4 Further results

DR in the OCC setting is a very ill-defined problem. There are two related problems (a)
a lack of an estimatable loss function (ELF) and (b) a lack of knowledge of the actual
distribution of the negative examples in the input space (KAD). ELF renders the problem
harder because it makes it impossible to use cross validation techniques for parameter setting
based on loss minimisation. KAD force us to take into account all possible distributions,
making conservative but possibly suboptimal approaches the most sensible ones.
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The KAD problem is our concern in this last part of our evaluation. In order to investigate
if in practice the presence of negative examples can also be beneficial for the application of
unsupervised DR techniques, we conducted a different experiment. This time we allowed the
unsupervised DR techniques to see the negative data. The whole process resembles now the
cheating supervised dimensionality reduction applied in Sect.4.3. The difference is that in
this case the unsupervised techniques have access to a more complete distribution of data but
not to class labels. This new setting is useful for relaxed OCC problems where we actually
have negative or unlabeled examples at training time, even if they are not fully representative
of the whole negatives space. Examples can be found in the information retrieval domain,
represented in this evaluation by the text and iofl datasets. We show these results in Table 5.

If we use a proper model for the problem at hand, dimensionality reduction can help the
classifier. This is obvious, but the way they can help differs in the two cases we compare. In
short, with access to only the positive data we can only aspire to find packing representations—
structures that makes the target class occupy as little volume as possible. When allowed to
see data for both positives and negatives, rather than packing representations we can aspire to
find discriminative ones—structures that specifically separate the two classes. Both cases are
helpful for OCCs. The former because, in the absence of further knowledge of the negatives,
packing is the best we can do to account for all possible distributions of negative data. The
later is also useful, because we can account for the particularities of the actual negatives of
which we have knowledge.

Table 5 highlights that PCA works much better when we allow it to see the negatives. There
are two reasons for this. One is technical: for low sample sizes the matrices to be decomposed
by PCA (and LPP) become singular, so the solution to the eigen-problem becomes unstable
and the directions found noisy. Obviously this problem gets attenuated when using more
data. For example, in fbis the average size of the training set in each of the 10 folds is of 83

Table 5 Best BAR achieved by the Gaussian classifier in two cases: computing the DR using only positives
(L from “legal”) or using also the negatives (C from “cheating”, in italics)

IG Q-a LS LPP PCA

C L C L C L C L C
fbis 76.7 53.8 65.0 57.3 64.1 51.3 58.9 50.6 72.7
oh5 85.3 50.7 58.5 50.0 53.1 50.0 56.1 50.0 72.7
re0 72.1 52.8 64.4 515 59.8 459 49.8 50.0 64.2
tr12 79.2 52.6 64.2 52.7 56.6 50.2 70.8 48.0 65.4
iofl-Indoor 78.3 76.1 75.5 86.3 79.2 76.3 62.5 78.3 91.3
iofl-Leaves 70.0 71.1 77.8 73.1 68.9 70.8 53.1 70.3 78.9
mfeat-pixel-7 89.6 91.6 89.6 85.7 87.8 80.0 93.2 97.6 93.8
mfeat-pixel-8 78.5 844 80.6 79.0 79.7 774 92.9 94.0 93.7
Bronchiolitis 72.1 72.6 68.5 72.6 70.9 73.9 68.5 73.4 70.9
Arrhythmia 77.6 70.0 70.0 68.9 69.5 62.6 68.7 70.6 76.3
TIS-5% 82.7 64.0 81.5 539 63.7 50.0 53.9 50.0 76.8
Leukemia 93.6 66.0 61.3 66.0 70.3 50.0 85.6 529 91.7
85Drugs 83.6 81.9 77.9 81.9 79.3 87.3 71.3 81.1 81.1
DelftPump5x3Noisy 74.2 64.4 64.2 79.6 77.8 67.2 73.3 55.1 76.3
Sonar 65.7 69.0 69.8 70.6 69.5 64.0 66.5 65.4 65.9

For each case, the winning result is highlighted with boldface. For Q-«, LS and LPP the differences presumably
depend on whether the model best align to the positive-class or to the whole-space structures, and whether
those structures are useful to describe or to discriminate. For PCA the results are way better in the cheating
setting, presumably due to a packing versus spreading dilemma which clearly favors packing when seeing
only positive data and spreading when it has access to both positives and negatives
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examples when we only keep positives while it is of 2,217 when keeping both positives and
negatives. Often the solution with more data will be numerically better.

The second reason is what makes the application of PCA a bad idea in a substantial
number of one-class problems. After all what PCA does is to find decorrelated dimensions
in which the data variance is large. That is, we are finding dimensions where the data has a
large spread. Theoretically spreading the data has nothing to do with finding discriminative
directions. However, based on geometrical intuitions, and supported by the results presented
in Table 5, we can distinguish two different scenarios when forecasting the effectiveness of
PCA—if it has access to positives only or if it can see both positives and negatives.

In the pure one-class setting, with no negatives at all at training time, spreading the data
is a bad idea. Because of our total ignorance of the negatives, the approach should be to
maximize the chance that, whatever is its distribution, we will accept as few of them as
possible. This is achieved by projections that make the positive data occupy as little space
as possible (packing), which in PCA corresponds to those explaining less variance (Tax and
Muller 2003). See Fig.4 for an explanatory example in low dimensions.

On the other hand, PCA can be useful more often when having access to negatives.
This conjecture is based on this observation: in the real world, we will usually face types
of classification problems where there will be class separability in at least some subspace.
Often separability comes together with high variability between the classes and so, with large
spread in the whole data. If projecting into those discriminative subspaces will spread the data
as a side effect, in practice we can take the reverse path and find high variability subspaces
with the hope that they will lead to class separability.

For example, Gaussianity is a common data generating process (that is the reason why it
is also called Normality). In a real world classification problem we could have a Gaussian
generating each class, and these Gaussians would differ only in their means. The directions
in which the data objects are separable, where the Gaussians do not overlap, will proba-
bly account for more variability than the directions in which each single class varies the
most. Therefore, by projecting the data onto those directions of high “global variability”, a
discriminative representation would emerge. A toy example is shown in Fig. 5.

| |
| |
F——f————m——————————— rap———
| |
| |
| |
| |
| |
| |

Fig.4 Anexample for atwo-dimensional classification problem. The positives are distributed in the ellipsoidal
area. PCA will find directions A1 and A, where A captures more variance and is ranked as the first principal
component. When projecting onto A1, negatives in the area marked as A will be classified as positive. When
projecting onto Ay, only those negatives in A will be misclassified. Since we actually don’t know where the
negatives live in the space, selecting A, seems a more sensible option. We call 1, a “packing dimension” [the
coincidence of the term with the fractal packing dimension (Falconer 1990) is deliberate]. Source: Adapted
from Tax and Muller (2003)
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Fig. 5 PCA over an artificial two-dimensional toy example. We generate three mirroring data clouds by
sampling from Gaussian distributions with diagonal covariance, the variance in x| (“horizontal dimension”) is
three times that in xo (“vertical dimension”), and the means differ only in x;. We label the central cloud as the
positives examples and the upper and lower clouds as the negatives, where the total number of positives and
negatives is the same. When computing PCA only with the positive data, the first principal component is x1,
accounting for a 75% of the variance. This is clearly a bad option. On the right side of each plot we indicate
the direction of the first principal component found by using both positives and negatives, labelled with the
amount of variance it accounts for. We move the negative clouds so that they get closer and, eventually, overlap
the positive cloud. In this case PCA finds “the right direction” until it is no longer possible to do so because
both classes overlap

5 Conclusions

This paper reports progress in research on the applicability of DR techniques (specifically
techniques from unsupervised learning) for OCC problems. We have demonstrated the poten-
tial improvements to be had by applying carefully selected DR techniques prior to one-class
classification.

All the techniques for dimensionality reduction that we have evaluated seem to deserve
a place, at least in some circumstances, in the one-class practitioners toolbox. And since
the number of one-class practitioners is increasing it is necessary to gain insight on which
combinations of DR technique and OCCs are the most appropriate for the problem at hand.
It is also important to develop specific DR tools aimed at the one-class problem. As it is the
case in other fields of machine learning, there is no such a thing as a silver bullet. In addition,
it is clear that there are some problems where the specific characteristics of all LPP, LS, Q-«
and PCA are effective. General guidelines can be inferred from studies like this one, but in
general elevated performances can only be achieved by a combination of domain specific
knowledge and data analysis skills.
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The results presented discourage the application of PCA when we only have access to
positives at training time. This is because accentuating the variability within the target class
is often a bad idea for one-class classification. Without any knowledge of the actual negatives
distribution, we need to allow that all types of distributions are possible. The best strategy
is then to pack the positives as much as we can. When considering PCA in practice the
question of which components are being used, whether the principal, the minor or a mix of
both, should be tackled. In specific problems, such as when the input space features are highly
correlated, choosing the high variance dimensions will still produce an elevated performance.
Another not so obvious hint is to let PCA see as much data as possible, being positives or
not; the rationale behind this suggestion is that there will be a good number of real problems
where high variability between the classes arises naturally in subspaces that are relevant for
classification.

As already stated, locality preservation seems an appropriate criterion for OCC tasks but it
contains the implication that none or very few of the input features are irrelevant; they may be
justredundant. Laying aside the specific details of the way locality preservation is modelled in
LPP and LS, the key issue here is how meaningful the distance functions used to define it are.
We encounter the paradoxical situation that for reducing the dimensionality of the data one
needs to rely on distance measures which, most probably, are not meaningful in the original
high dimensional space. How to learn a proper metric from the data itself instead of imposing
a pre-specified one is an active research field in several areas of classification. For one-class
classification, once again, the current techniques are not directly applicable because they
use information from both sides of the classification boundary. However, related techniques
could lead to useful one-class metric learning techniques.

Model selection is another tricky issue in this context that we have not addressed in the
current study. Therefore the results can be regarded as unfairly biased for those techniques
for which parameter tuning can have a dramatic impact on performance. Obviously this is
an aspect that must be taken into account when seeking for maximum performance in real
applications, so further investigation on which criteria are to be used and on the algorithmic
details on how to conduct parallel and interlaced model selection for both DR and OCC is
necessary. Also finding principled means for automatical selection of the threshold value
for the resemblance function and of the optimal target dimensionality is a difficult, if not
unsolvable, challenge.

The evaluation suggests that there is much to be gained by applying supervised dimen-
sionality reduction techniques together with OCCs. How to accommodate unlabelled and/or
actual negatives to relax or tackle specific instances of the OCC problem are related lines
of research. Casting the pure OCC problem as a supervised one is possible by assuming
a generation process to create artificial negative examples (e.g. sampling from the uniform
distribution). This approach is supported by theoretical and practical studies (Fan etal. 2004;
Steinwart etal. 2005; Abe etal. 2006; Yaniv and Nisenson 2006; Scott and Nowak 2006).
Related heuristics have been used in OCC for tasks such as model selection by volume esti-
mation (Tax and Duin 2002); however the curse of dimensionality renders volume estimation
by sampling and counting unfeasible for even moderate dimensional problems because it re-
quires an exhaustive coverage of too much space. Our bet here is that, on the contrary, this
approach can be useful for dimensionality reduction even in high dimensional spaces, provi-
ded that the generated sample quality is good in terms of diversity and divergence from the
specific feature interactions in the positive data; this could be achieved with much smaller
artificial sample sizes.
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Table 6 Pairwise win/tie/loss analysis for the dimensionality reduction techniques on a per classifier basis
(a—d) and across all the classifiers (e)

1G Random Q-« LS LPP PCA
(a) Gauss
No DR 0,0,15 1,1,13 2,0,13 1,2,12 2,2,11 4,1,10
IG 10,1,4 10,0,5 9,0,6 12,0,3 11,04
Random 9,1,5 9,1,5 12,0,3 10,0,5
Q-« 7,1,7 11,0,4 10,0,5
LS 12,1,2 10,1,4
LPP 6,2,7
(b) k-Means
No DR 0,0,15 1,0,14 2,1,12 2,0,13 8,0,7 4,0,11
1G 13,0,2 10,0,5 11,1,3 14,0,1 13,0,2
Random 6,0,9 8,0,7 9,0,6 8,0,7
Q-a 8,0,7 10,0,5 10,0,5
LS 9,0,6 9,0,6
LPP 5,0,10
(¢) k-NN
No DR 3,0,12 1,2,12 2,1,12 3,1,11 6,0,9 8,0,7
1G 10,1,4 11,0,4 10,0,5 12,0,3 12,0,3
Random 5,0,10 5,0,10 9,0,6 10,0,5
Q-«a 8,0,7 9,0,6 12,0,3
LS 10,0,5 11,1,3
LPP 7,2,6
(d) SVDD
No DR 0,0,15 2,0,13 3,1,11 5,0,10 6,0,9 8,0,7
1G 13,0,2 13,0,2 14,1,0 12,0,3 15,0,0
Random 4,0,11 8,0,7 8,0,7 12,0,3
Q-« 12,0,3 9,0,6 13,0,2
LS 10,0,5 13,0,2
LPP 8,1,6
(e) Totals
No DR 3,0,57 5,3,52 9,3,48 11,3,46 22,2,36 24,1,35
1G 46,2,12 440,16 442,14 50,0,10 51,0,9
Random 24,1,35 30,1,29 38,0,22 40,0,20
Q-«a 35,1,24 39,0,21 45,0,15
LS 41,1,18 43,2,15
LPP 26,5,29
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Table 7 Pairwise win/tie/loss analysis for the classifier techniques on a per dimensionality reduction basis
(a—g) and across all the dimensionality reduction techniques (h)

k-Means k-NN SVDD Dominance Win Loss
(a) No DR
Gauss 5,0,10 6,0,9 52,8 k-Means 13 29 16
k-Means 9,0,6 10,0,5 k-NN 3 24 21
k-NN 9,0,6 SVDD -5 19 24
Gauss —11 16 27
(b) IG
Gauss 11,04 11,04 7,0,8 Gauss 13 29 16
k-Means 9,0,6 8,0,7 SVDD -1 22 23
k-NN 8,0,7 k-Means -3 21 24
k-NN -9 18 27
(c) Random
Gauss 10,0,5 12,0,3 12,1,2 Gauss 24 34 10
k-Means 12,1,2 12,0,3 k-Means 14 29 15
k-NN 9,0,6 k-NN —16 14 30
SVDD —-22 11 33
(d) Q-
Gauss 6,0,9 11,04 9,0,6 Gauss 7 26 19
k-Means 8,0,7 9,0,6 k-Means 7 26 19
k-NN 7,0,8 SVDD -5 20 25
k-NN -9 18 27
(e) LS
Gauss 9,0,6 11,04 11,04 Gauss 17 31 14
k-Means 10,0,5 10,0,5 k-Means 7 26 19
k-NN 9,0,6 k-NN -9 18 27
SVDD —15 15 30
(f) LPP
Gauss 6,2,7 6,2,7 8,1,6 k-Means 5 23 18
k-Means 71,7 9,1,5 k-NN 2 21 19
k-NN 7,2,6 Gauss 0 20 20
SVDD -7 17 24
(2) PCA
Gauss 9,1,5 8,1,6 10,1,4 k-Means 16 30 14
k-Means 11,04 14,0,1 Gauss 12 27 15
k-NN 6,2,7 k-NN —10 16 26
SVDD —18 12 30
(h) Total
Gauss 56,3,46 65,3,37 62,5,38 Gauss 62 183 121
k-Means 66,2,37 72,1,32 k-Means 59 184 125
k-NN 55,4,46 k-NN —48 129 177
SVDD —173 116 189
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